A8243

Description

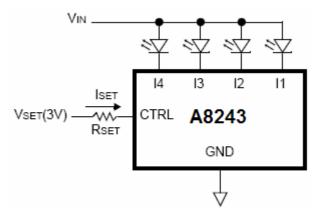
The A8243 is a LED driver providing matched current source bias for any color LED, including white and blue. LED current is programmable using an external resistor. The A8243 current is typical 230 x I_{SET} (per LED) at an LED cathode voltage of 150mA and typical 325 x I_{SET} at an LED cathode voltage of 1V where I_{SET} is the current through the external resistor connected to the CTRL pin.

The A8243 is available in 6pin SC70 Package.

Ordering Information CTRL 13 6 A8243 12 2 5 14 4 GND 11 3 **Diode Control** Part Number 4 A8243C6

C6= 6pin SC-70 package

Advanced Innovation Technology Corp. www.ait-ic.com


Features

- Ultra-Low Voltage Drop: Less than 150mV(for Li-ion Battery Support)
- LED Driver for Parallel-Connected LEDs
- Up to 40mA per LED
- Current-Matching Requires w/o External Components
- Analog and PWM Brightness Control
- <1uA Low Shutdown-Current
- No Electromagnetic Interference, No Switching Noise
- The A8243 is available 6pin SC70 Package.

Application

- LED Display
- Keyboard Backlight
- Portable DVD Player
- MP3, CD Player, Mobile, PDA
- **Cordless Displays**
- Consumer Electronics.

Typical Application

Page	1/12
Rev	1.0

Pin Description

Pin #	Name	Description
1	CTRL	Set LED Current, Connect to External Resistor.
2	12	Connect to Cathode of LED.
3	11	Connect to Cathode of LED.
4	GND	Ground Pin
5	14	Connect to Cathode of LED.
6	13	Connect to Cathode of LED.

Advanced Innovation Technology Corp.	Page	2/12
www.ait-ic.com	Rev	1.0

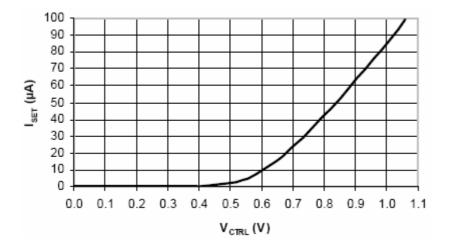
A8243

Absolute Maximum Ratings

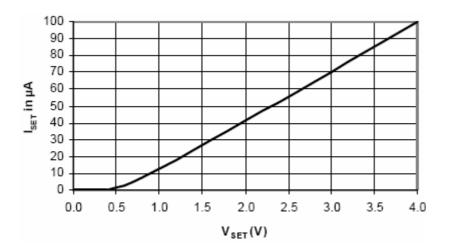
V ₁₁ , V ₁₂ , V ₁₃ , V ₁₄ and CTRL to GND	-0.3~5V
Power Dissipation $T_A=85^{\circ}C$ (SC-70-6)	200mW
I1, I2, I3, I4 Steady State Current	100mA
Lead Temperature (Soldering, 10s)	260°C
Junction Temperature	150°C
Storage Temperature	-65°C ~ +150°C
Electrostatic Discharge Protection (ESD) Level	2KV

Electrical Characteristics (T_A=25°C)

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
I _{SET} Range	I _{SET}		25		150	uA
LED-to-LED Current	Match		-3		3	%
Matching						
I _{SET} in OFF Mode	I _{SET,OFF}	V _{CTRL} =3V, V _{SAT} =3V, T _A =25°C		0.1	1	uA
I_{IN} in OFF Mode	I _{IN,OFF}	V _{CTRL} =3V, V _{SAT} =3V		0.1	14	uA
Peak Efficiency*	EFF	V _{IN} =3V	95			%
Output Current	OCMR	I _{SAT} =25uA,V _{SAT} =150mV	175	250	325	uA
Multiplication Ratio		I _{SAT} =40uA,V _{SAT} =150mV	170	240	310	
		I _{SAT} =75uA,V _{SAT} =150mV	145	210	275	
		I _{SAT} =25uA,V _{SAT} =600mV	215	310	405	
		I _{SAT} =40uA,V _{SAT} =600mV	215	305	395	
		I _{SAT} =75uA,V _{SAT} =600mV	205	295	385	
		I _{SAT} =25uA,V _{SAT} =1000mV	235	335	435	
		I _{SAT} =40uA,V _{SAT} =1000mV	230	330	430	
		I _{SAT} =75uA,V _{SAT} =1000mV	220	315	410	

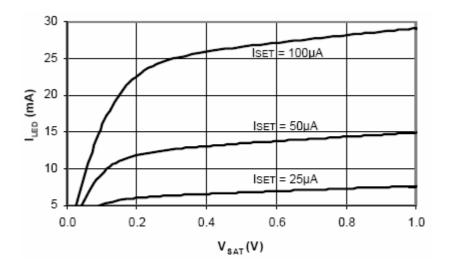

*Efficiency=(V_{IN}-V_{SAT})/V_{IN}.

Advanced Innovation Technology Corp.	Page	3/12
www.ait-ic.com	Rev	1.0

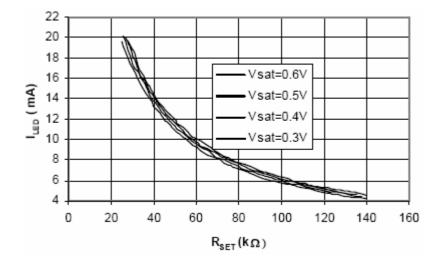

A8243

Typical Characteristics

1. I_{SET} vs V_{CTRL}

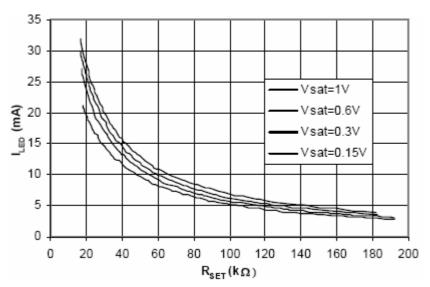


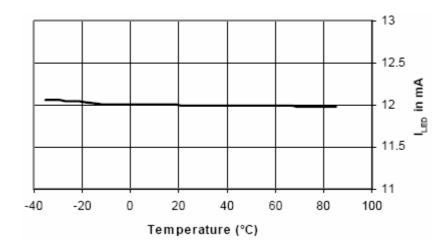
2. I_{SET} vs V_{SAT} (R_{SET}=30K Ω)



Advanced Innovation Technology Corp.	Page	4/12
www.ait-ic.com	Rev	1.0

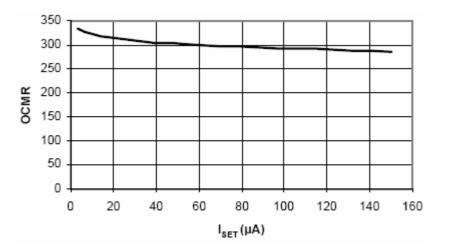
3. I_{LED} vs V_{SAT}


4. I_{LED} vs R_{SET}

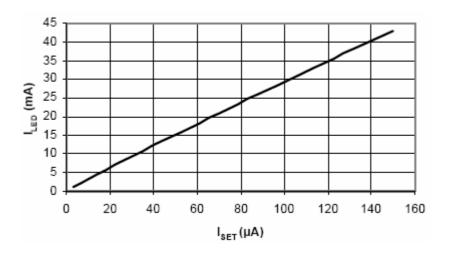

Advanced Innovation Technology Corp.	Page	5/12
www.ait-ic.com	Rev	1.0

A8243

5. I_{LED} vs R_{SET}

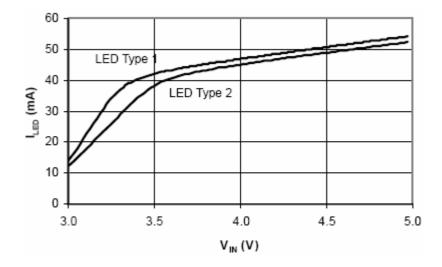


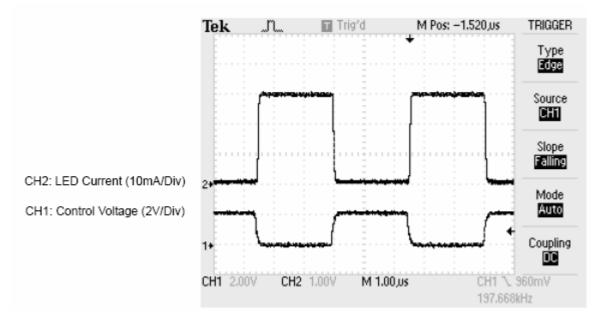
6. I_{LED} vs Temperature (V_{LED} = 0.25V, I_{SET} = 50uA)



Advanced Innovation Technology Corp.	Page	6/12
www.ait-ic.com	Rev	1.0

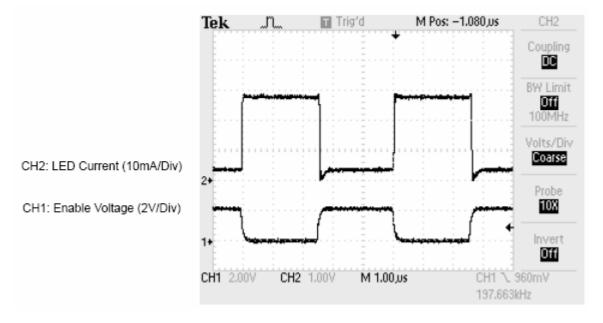
7. OCMR vs. I_{SET}


 $8. \ I_{\text{LED}} \ vs. \ I_{\text{SET}}$


Advanced Innovation Technology Corp.	Page	7/12
www.ait-ic.com	Rev	1.0

A8243

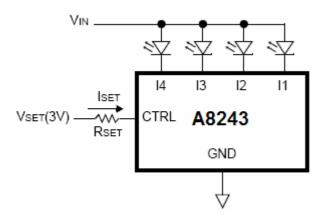
9. I_{LED} vs. V_{IN}


10. Control Voltage Transient Response

Advanced Innovation Technology Corp.	Page	8/12
www.ait-ic.com	Rev	1.0

A8243

11. Enable Voltage Transient Response


Advanced Innovation Technology Corp.	Page	9/12
www.ait-ic.com	Rev	1.0

A8243

Application Information

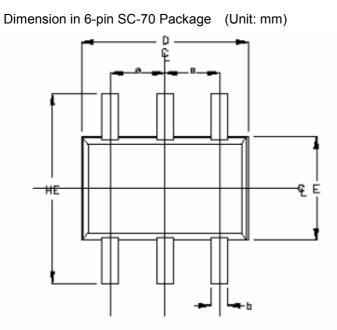
Typical Application Diagram

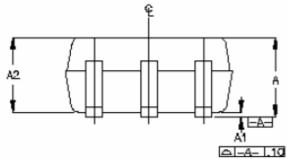
4 Diode Control

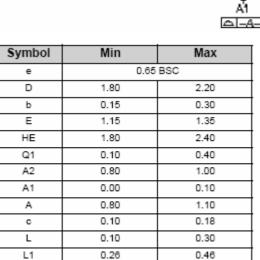
Setting the LED Current

The current going into the LEDs is approximately OCMR times greater than the current I_{SET} . LED current is controlled by V_{SET} and R_{SET} according to the formula:

 I_{LED} = OCMR x (V_{SET} - V_{CTRL}) / R_{SET}

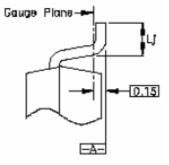

For V_{SET} =3V and a specific LED current, the R_{SET} value can be determined using the diagram shown in previous Typical Performance Characteristics. For any other option, the value of I_{SET} can be determined using the graph " I_{SET} vs. V_{CTRL} ".


LED Brightness be adjusted by driving pin CTRL with a PWM signal.


Advanced Innovation Technology Corp.	Page	10/12
www.ait-ic.com	Rev	1.0

A8243

Package Information



Advanced Innovation Technology Corp.

-8-

Page 11/12 Rev 1.0

IMPORTANT NOTICE

Advanced Innovation Technology Corp. (AiT) reserves the right to make changes to any its product, specifications, to discountinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

Advanced Innovation Technology Corp.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

Advanced Innovation Technology Corp. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

Advanced Innovation Technology Corp.	Page	12/12
www.ait-ic.com	Rev	1.0